

25 June 2020 Motion Imagery Standards Board 1

1 Scope

This standard describes a method for formatting multi-dimensional arrays of data in KLV (Key

Length Value). Multi-dimensional arrays store and organize related data. Applications may

process the array as a unit of data (i.e., matrices, etc.) or use them to organize a group of

information. This standard defines a KLV Pack construct to format a multi-dimensional array

and the array support information. The Multi-Dimensional Array Pack (MDAP) minimizes the

bytes needed to represent the data. Supporting information includes options for specifying

methods of array packing and element processing, such as using MISB ST 1201 (Floating Point

to Integer Mapping) for compression and Run-Length Encoding for unsigned integers.

In application, the Multi-Dimensional Array Pack defined in this standard requires further

context from an invoking document; that is, it is not a standalone construct. To provide

consistency, this standard defines a syntax for invoking this standard within MISB documents.

2 References

[1] SMPTE ST 336:2017 Data Encoding Protocol Using Key-Length-Value.

[2] MISB, MISP-2020.1: Motion Imagery Handbook, MISB, 2020.

[3] MISB ST 1201.4 Floating Point to Integer Mapping, Feb 2019.

[4] ISO/IEC 8825-1:2015 (ITU-T X.690) Information Technology – ASN.1 Encoding Rules:

Specification of Basic Encoding Rules (BER), Canocical Encoding Rules (CER) and

Distinguished Encoding Rules (DER).

[5] IEEE 754-2008 Standard for Floating-Point Arithmetic.

3 Revision History

Revision Date Summary of Changes

ST 1303.2 06/25/2020 • Added array compression techniques:
o Boolean Array Encoding
o Unsigned Integer Encoding
o Run-Length Encoding

• General Editing

STANDARD

Multi-Dimensional Array Pack

MISB ST 1303.2

25 June 2020

MISB ST 1303.2 Multi-Dimensional Array Pack

25 June 2020 Motion Imagery Standards Board 2

• Broadened the Element Processing concept; renamed it to Array
Processing
o Element Processing is now one of the formatting options
o Renamed EPA and EPAS acronyms to APA and APAS

respectively

• MDARRAY Syntax Changes:
o “MDARRAY” changed to “MDAP” since syntax changes
o Removed use of KLV Keys
o Added Type to declare data type of array elements

• Updated Examples with new MDAP syntax

• Added requirements -20, 21

• Deprecated requirements: -1, 4, 5, 6, 8, 10, 11, 12, 13, 15, 18

4 Acronyms, Terms, Definitions

APA Array Processing Algorithm

APAS Array Processing Algorithm Support

IMAPA Integer Mapping Starting Point A; defined in MISB ST 1201

IMAPB Integer Mapping Starting Point B; defined in MISB ST 1201

IEEE Institute of Electrical and Electronics Engineers

ISO International Organization for Standardization

KLV Key Length Value

MDAP Multi-Dimensional Array Pack

MISB Motion Imagery Standards Board

MISP Motion Imagery Standards Profile

SMPTE Society of Motion Pictures & Television Engineers

ST Standard

5 Introduction

Within software, data structures such as records and arrays provide information organization.

When reformatting data structures into KLV, record structures map readily into KLV constructs,

such as KLV Set and Pack constructs. However, the SMPTE KLV standard [1] does not formally

specify a means for reformatting arrays into KLV. This standard defines an efficient and flexible

method for formatting multi-dimensional arrays into KLV.

6 Array Composition

An array of data is an organization of multiple elements (i.e., the data) along one or more

dimensions. In transferring an array of data, support information ensures the organization of the

data is consistent between the sender and receiver. A document which invokes this standard will

define the array parameters to include: the number of dimensions, the number of elements per

dimension, the size of an element, and the data’s type.

MISB ST 1303.2 Multi-Dimensional Array Pack

25 June 2020 Motion Imagery Standards Board 3

The elements in an array can be of any type (e.g., integers, floating point values, strings, KLV

pack or set values, etc.). For the MDAP the size of the elements is fixed-length but some MDAP

options allow for element lengths to be computable from their binary format (e.g., BER-OID).

Inflating or shrinking elements can normalize elements with different sizes into fixed-length

elements (see Appendix B).

When grouping data into an array information about the group can help reduce the number of

bytes needed for the array. For example, in an array composed of integers originally defined with

four bytes each, but the values only need one byte, the array uses one-byte elements instead of

four.

This document uses the following terminology:

Array: Uppercase notation to indicate reference to an array as defined in this document.

Element: Data representing a value identified by an index or indices.

Requirement(s)

ST 1303-02 The invoking standard shall specify the number of dimensions of the Array.

ST 1303-03 The invoking standard shall specify the size of each dimension or how to compute
the size of each dimension in the Array.

Figure 1 illustrates a single dimension Array, where its indexed Elements begin at 0 and end at

N-1 for N-Element columns. Elements in a one-dimensional array index only by columns, so

column 0 is Element 0, column 1 is Element 1, etc.

Figure 1: Illustration of a One-Dimensional Array of N Elements.

Figure 2 shows a two-dimensional Array, where its Elements index by the row r and the column

c. Thus, the first Element is (0, 0) for r = 0, c = 0; the second Element in row 0 is (0, 1) for r = 0,

c = 1; the second Element in row 1 is (1, 1) for r = 1 and c = 1, etc. (see Figure 2). Rows index 0

to M-1 and columns index 0 to N-1.

Element
0

Element
1

Element
2

Element
N-1

MISB ST 1303.2 Multi-Dimensional Array Pack

25 June 2020 Motion Imagery Standards Board 4

Figure 2: Illustration of a Two-Dimensional Array of M-Rows by N-Columns

Figure 3 depicts a three-dimensional Array, where its Elements index by planes (shown as a

separate colored two-dimensional array), rows, and columns. The first Element in plane 0, row 0,

and column 0 is (0, 0, 0) for (p, r, c) where p = r = c = 0. Planes index 0 to P-1, rows index 0 to

M-1, and columns index 0 to N-1.

Element
0,0

Element
0,1

Element
0,2

Element
0,N-1

Element
1,0

Element
1,1

Element
1,2

Element
1,N-1

Element
2,0

Element
2,1

Element
2,2

Element
2,N-1

Element
M-1,0

Element
M-1,1

Element
M-1,2

Element
M-1,N-1

R
o

w
s

Columns

MISB ST 1303.2 Multi-Dimensional Array Pack

25 June 2020 Motion Imagery Standards Board 5

Figure 3: Illustration of a Three-Dimensional Array of P-Planes by M-Rows by N-Columns

Higher number of dimensions extend the notation on the left-hand side. For example, four

dimensional arrays include the fourth dimension on the left of the “plane” dimension, e.g., (d4,

plane, row, column) and five dimensional arrays include the fifth dimension to the left of the 4th

dimension, e.g., (d5, d4, plane, row, column), etc.

7 Multi-Dimensional Array Pack

The Multi-Dimensional Array Pack (MDAP) is a KLV Truncation Pack (described in the Motion

Imagery Handbook [2]) which contains both the array data and information about the array. The

array data has three formatting types: Natural, Element-Processed, and Compact. The Natural

format arranges the multi-dimensional array into a serialized one-dimensional array. The

serialization for the Natural format uses same length array Elements, i.e., all Elements in MDAP

are the same number of bytes. For example, a Natural formatted 3 x 3 array of floating-point

values becomes a one-dimensional array with nine Elements; each Element is the same length

floating point, e.g., a 32-bit IEEE. The MDAP includes the number of dimensions, size of each

dimension, and size of each Element so data receivers can re-construct the array.

An Element-Processed array is like a Natural formatted array, but each Element is pre-

processed before the serialization. For example, a 3x3 array of floating-point values may be

Element-Processed with MISB ST 1201’s [3] IMAP encoding (see Appendix D.1) before the

serialization. The IMAP algorithm reduces the size of the Elements. All Elements of the array

undergo the same IMAP processing, thus sharing the same minimum, maximum, and length

Element
(0,0,0)

Element
(0,0,1)

Element
(0,0,N-1)

Element
(0,1,0)

Element
(0,1,1)

Element
(0,1,N-1)

Element
(0,M-1,0)

Element
(0,M-1,1)

Element
(0,N-1,N-1)

(0,0,N-1)(0,0,1)(0,0,0)

(1,0,N-1)(1,0,1)(1,0,0)

(P-1,0,N-1)(P-1,0,1)(P-1,0,0)

Element
(0,M-1,N-1)

(P
-1

,M
-1

,N
-1

)

(P
-1

,1
,N

-1
)

(P
-1

,0
,N

-1
)

(1
,0

,N
-1

)

(1
,1

,N
-1

)

(1
,M

-1
,N

-1
)R

o
w

s

Columns

Planes

MISB ST 1303.2 Multi-Dimensional Array Pack

25 June 2020 Motion Imagery Standards Board 6

parameters and reducing the size of each element to the same number of bytes. The MDAP

includes the IMAP parameters so data receivers can decode the array elements.

Requirement(s)

ST 1303.2-20 All Elements in a Natural Array shall use the same number of bytes.

ST 1303.2-21 All Elements in an Element-Processed Array shall use the same number of bytes.

A Compact array condenses the MDAP array data based on the data type or other means (such

as patterns within the array data). The MDAP includes algorithm parameters to support the

method of compaction.

To distinguish between the different formatting options and methods the MDAP includes an

Array Processing Algorithm (APA) indicator; Appendix D lists and provides details of all APAs.

Table 1 defines the order of the Multi-Dimensional Array Pack items.

Table 1: Multi-Dimensional Array Pack

Name
Required/
Optional

Type
Min

Value
Section

Description

NDim Required BER-OID 1 7.2.1
Number of dimensions in the Array. The
minimum value is one.

Dimi Required BER-OID 1 7.2.2
Size of ith dimension. There are NDim number
of these values.

EBytes Required BER-OID 0 7.2.3
Number of bytes for each Element. The
minimum value is zero.

APA Required BER-OID 1 7.2.4
Array Processing Algorithm. Indicator of the
format the Array of Elements uses.

APAS Optional
Defined by

APA
N/A 7.2.5 Array Processing Algorithm Support

Array of
Elements

Optional
Defined by

Invoking
Document

N/A 7.2.6
Array data in either Natural, Element-
Processed, or Compact format

Figure 4 illustrates the Multi-Dimensional Array Pack, along with its Length. The items (blue)

are the required information stated in Table 1; APAS items (yellow) are optional; the Array of

Elements (green) constitutes the Array data, which is also optional.

Figure 4: Multi-Dimensional Pack Structure

Length

Multidimensional Array Truncation Pack Value

NDim

(BER-OID)

Dim1

(BER-OID)

Array of Elements

(Variable)

Dim2

(BER-OID)

DimN

(BER-OID)

APA

(BER-OID)

APAS

(Variable)

EBytes

(BER-OID)

MISB ST 1303.2 Multi-Dimensional Array Pack

25 June 2020 Motion Imagery Standards Board 7

Depending on the APA value, the Array of Elements may be in a Natural, Element-Processed, or

Compact format. If applications choose one of the Compact formats the size of each dimension,

Dimi, is the size before compaction processing of the Array of Elements.

 Multi-Dimensional Array Pack – Length

The Length of the Multi-Dimensional Array Pack is BER-length encoded as specified in [1]. The

length includes the number of bytes for NDim, all the dimensions (Dim1…DimN), the number of

bytes for each element EBytes, the APA, the APAS, and the Array of Elements. Compute

PackLength as follows:

PackLength = L(NDim) + L(Dim1) +…+ L(DimN) + L(EBytes) + L(APA) + L(APAS) + L(Array of

Elements)

Where L(x) is the length of value x in bytes.

As discussed below, the L(APAS) and L(Array of Elements) can both be zero depending on

usage and circumstances. Appendix D defines the APAS lengths or how to compute them for

each APA.

 Multi-Dimensional Array Pack – Value

The Value of the Multi-Dimensional Array Pack consists of a collection of required and optional

items as listed in the following sections. The pack requires all items unless noted as optional.

7.2.1 Item - NDim

The NDim item is the count of dimensions in the Array of Elements. For example, a simple list of

Elements is a one-dimensional Array; therefore, NDim equals 1. A rectangle of Elements is a two-

dimensional Array; therefore, NDim equals 2. A cube of elements is a three-dimensional Array;

therefore, NDim equals 3, etc. The NDim value cannot be zero.

Requirement

ST 1303-07 The invoking document shall specify a value for NDim that is greater than or equal to
one (1).

7.2.2 Item – Dimi

The Dimi item specifies the number of Elements in the ith dimension, which is greater than or

equal to one (i.e., zero is disallowed). For example, for a three-dimensional cube Array of

100x200x300 Elements (i.e., NDim = 3) Dim1 = 100, Dim2 = 200 and Dim3 = 300.

Requirement

ST 1303-09 The value of Dimi shall be greater than or equal to one (1).

7.2.3 Item – EBytes

Depending on the Array Processing Algorithm (APA) the EBytes value represents either the

Element size (in bytes) or is the value one (1) for arrays which have variable length elements.

MISB ST 1303.2 Multi-Dimensional Array Pack

25 June 2020 Motion Imagery Standards Board 8

With Natural (i.e., APA = 1) or Element-Processed Arrays (i.e., APA=2) the EBytes item specifies

the number of bytes for each fixed-length Element within the Array. For example, if the Array

consists of single-precision, floating-point numbers, then EBytes = 4 bytes.

With Compact Arrays the EBytes value may indicate a size for use in the APA algorithm or be the

value of one for APA algorithms using variable length Element sizes – the value of one is a

placeholder and has no meaning in these cases.

If EBytes is zero the Array of Elements item contains no data and the empty array is just a signal;

for example, indicating there was no change in the last set of measurements.

7.2.4 Item – APA (Array Processing Algorithm)

The APA (Array Processing Algorithm) item either specifies the method of processing individual

Elements (Element-Processed) or how to decode the Array Element data into an Array

(Compact). An APA of one (1) indicates no processing (i.e., Natural Array), and the invoking

documents specifies the Element’s data type in the Array. All other APA values indicate some

form of Element or Array processing. Appendix D lists the different Element Processing

Algorithms, their item, and algorithms.

Requirement

ST 1303-14 An APA (Array Processing Algorithm) item value shall be assigned a value only from
MISB ST 1303 Table 3: Array Processing Algorithms.

7.2.5 Item – APAS (Array Processing Algorithm Support) (Optional)

The optional APAS (Array Processing Algorithm Support) item specifies one or more values for

the processing algorithm as needed. Each APA in Appendix D lists its support values. If the APA

value is set to one (1), there is no corresponding APAS item. The APAS item precedes the Array

so parsers can use the information to interpret the data on input.

7.2.6 Item – Array of Elements (Optional)

The optional Array of Elements item has threes formats: Natural, Element-Processed, or

Compact. The value of the APA determines the type of format; see Table 3 in Appendix D.

7.2.6.1 Natural and Element-Processed Formats

Both the Natural and Element-Processed formats serialize the multi-dimensional array into a

one-dimensional array using row major order. The one-dimensional array contains Dim1 * Dim2

* … * DimN Elements. The size of each Element is exactly EBytes bytes. The total length (in

bytes) of the Array of Elements is: Dim1 * Dim2 *… * DimN * EBytes. Any multi-dimensional

Element in its serialized one-dimensional Array may be addressed by computing an offset from

the start of the Array (see Appendix B for computation).

7.2.6.2 Compact Format

With the Compact format, the Array of Elements is an encoding of the multi-dimensional array.

The APA item specifies the encoding method and the optional APAS item may include one or

MISB ST 1303.2 Multi-Dimensional Array Pack

25 June 2020 Motion Imagery Standards Board 9

more parameters to aid in the decoding of the Array of Elements data. The sub-appendices of

Appendix D provide details of each encoding method.

8 MISP and MISB Document Standard Notation

When using or “invoking” the MDAP it is important to be clear as to the type, size and optional

packing used. The following notation will ensure consistency and completeness of the Array

definition:

MDAP(<Type>, <Data Identifier>, <NDims>, <Dim1>, …, <DimN>, [EBytes])
1

Where:

 Parameters in <..> are required

 Parameters in [..] are optional

 <Type> defines the data format (e.g., Float, UInt, IMAP,etc.) of all Elements in the

array (see Section 8.1)

 <Data Identifier> states the meaning of the value (see Section 8.1)

 Section 7 defines other parameters

There are cases when some of the values in the notation will be unknown (i.e., values computed

at runtime); the invoking document will label these values with a footnote (i.e., “Notex”) which

references text providing further explanation. Footnotes can indicate multiple parameters and

multiple uses of the MDAP definition - see Examples in Section 8.2. EBytes can be determined at

runtime based on the data values in the Array; however, an invoking standard may specify a

predetermined size. Although EBytes is a mandatory parameter in the MDAP, the Standard

Notation lists it as “optional” because the Ebytes value may be determined at run time.

Requirement

ST 1303-16 When using MISB ST 1303, the invoking standard shall use the MDAP(…) notation
to ensure consistency and completeness of the Multi-Dimensional Array Pack
definition in accordance with MISB ST 1303.

1 Previous versions of ST1303 use the KLV dictionary item to specify type and data identifier. If an invoking

document uses a key instead of a Type, please refer to ST1303.1 for how to interpret the type and meaning.

MISB ST 1303.2 Multi-Dimensional Array Pack

25 June 2020 Motion Imagery Standards Board 10

 Type and Data Identifier

The Type states the format of all Elements in the array. Types include Floating Point, IMAP,

Integer, UInt, BER-OID, and others the invoking standard may define. The type is either a fixed

length value or the length is determinable from the Element’s context (e.g., BER-OID).

The Data Identifier specifies what the Array of Elements represent. Data Identifiers can be

associated to the whole Array (homogeneous), or to parts of the Array (heterogeneous) when the

Elements all share the same length in bytes. A heterogeneous array example is a grid of points

with values representing latitude, longitude and height above ellipsoid (HAE); a three-

dimensional Array of points with a first plane used for latitude values, a second plane used for

longitude values and a third plane for HAE values as illustrated in Figure 5. This example

assumes the latitude, longitude and HAE values use the same number of bytes and Type, e.g., all

single-precision, floating-point values.

Figure 5: Illustration of 3-D Array with Different Plane Types

When the Array is heterogeneous additional footnotes describe the meaning and usage of the

dimensions. For example, in Figure 5, Array(0, all rows, all columns) are Latitude items;

Array(1, all rows, all columns) are Longitude items, and Array(2, all rows, all columns) are HAE

items. Although the meaning for the dimension may be heterogeneous the Type is the same

across the whole array.

When the Array is heterogeneous and the Elements use an Element-Processing APA, the

Element values need to be compatible with the APA. Care in choosing the APAS parameters is

important because the data may have different value ranges.

Example 1 and 2 below pertain to homogeneous Data Identifiers Arrays, while Examples 3, 4,

and 5 show three different approaches to defining a heterogeneous Array.

Latitude

Longitude

Height Above Ellipsoid

MISB ST 1303.2 Multi-Dimensional Array Pack

25 June 2020 Motion Imagery Standards Board 11

 Examples

Example 1: An Array of homogeneous Range Depth data.

 MDAP(Float, Range Depth, 2, 100, 100)

This is a two-dimensional Array of 100x100 Floating Point Elements of Range Depth data. Note:

the use of 32-bit vice 64-bit floating point values is determined at run-time.

Example 2: An Array of homogeneous Range Depth data with footnotes describing the “run-

time” values.

 MDAP(NoteA, Range Depth, 2, NoteB, NoteB)

 NoteA: Applications determine the type of “Float” or “IMAPB” at runtime

 NoteB: This value is dependent on the dimensions of the sensor.

 Implementations should use APA 2, where Min and Max are the bounds of the Array

data, and the Element size (EBytes) for the IMAPB is determined by IMAPA(Min, Max,

1.0e-4).

This is a two-dimensional Array of Range Depth data from a sensor (dimensions known only at

runtime - NoteB). The invoking standard recommends the use of IMAPB by defining an APA

transformation based on the expected values in the Array. In this example, the recommendation

is to use APA two (2), so each Element’s value maps to an integer with IMAPB by using the

min/max of the source array data and EBytes. The Element Size (EBytes) is computed based on the

IMAPA computation for length using a precision value of 1.0e-4. Applications determine the

Element type of “Float” (APA=1) or “IMAPB” (APA=2) at run-time.

Example 3: An Array of heterogeneous Latitude/Longitude/Altitude data with footnotes

describing the dimensional use and “run-time” values.

 MDAP(Float, NoteA, 3, 3, NoteB, NoteB)

 NoteA: Array(0, r, c) = Latitude,

 Array(1, r, c) = Longitude,

 Array(2, r, c) = HAE,

 r = all rows and c = all columns.

 NoteB: This value is dependent on the dimensions of the sensor.

This is a three-dimensional Array of Latitude, Longitude and Altitude data from a sensor

(dimensions known only at runtime - NoteB). The first plane (plane 0) is the Latitude, the second

plane (plane 1) is the Longitude and the third plane (plane 2) is the Altitude.

This usage is not recommended when applying APA=2 (MISB ST 1201 Floating Point to Integer

Mapping) to reduce the Element size (EBytes) because it is impeded by the need to represent

values with ranges orders of magnitude apart using a single mapping (latitudes of +/-90° versus

HAE of -900 to 19000 meters).

MISB ST 1303.2 Multi-Dimensional Array Pack

25 June 2020 Motion Imagery Standards Board 12

Example 4: The same data of Example 3 but defined as three separate homogeneous Arrays.

 MDAP(NoteA, Latitude, 2, NoteB, NoteB)

 MDAP(NoteA, Longitude, 2, NoteB, NoteB)

 MDAP(NoteA, HAE, 2, NoteB, NoteB)

NoteA: Applications determine the type of Float or IMAPB at runtime

NoteB: This value is dependent on the size of the sensor.

These are three separate Arrays: the first Array contains Latitude values; the second Array

contains Longitude values; the third Array contains Altitude values. The dimension of each

Array is defined at runtime from a sensor’s information (dimensions known only at runtime -

NoteA).

This usage is preferable when applying APA=2 (MISB ST 1201 Floating Point to Integer

Mapping) to reduce the Element size (EBytes) as each Array of Elements transforms individually.

Example 5: An ARRAY using the Location Truncation Pack.

 MDAP(Pack, Location Pack, 2, rows, cols)

This is a two-dimensional Array of Location Truncation Pack values. The invoking standard

defines the format of the fixed length Location Truncation Pack, with each value potentially

defining sub-components: latitude, longitude, height, sigma latitude, sigma longitude, sigma

height, Rho lat/lon, Rho lat/height and Rho lon/height. The Element size (EBytes) determines

which data is included in each Elements pack - the Elements must be consistently defined to

maintain the required fixed Element size.

This usage rigidly defines the ranges of each sub-component based on the pack definition, so

adjusting the Element size (EBytes) based on the range of data within the Array cannot be used.

MISB ST 1303.2 Multi-Dimensional Array Pack

25 June 2020 Motion Imagery Standards Board 13

Appendix A Deprecated Requirements

Requirement(s)

ST 1303-01
(Deprecated)

All elements in an Array shall use the same number of bytes.

ST 1303-04
(Deprecated)

The invoking standard shall specify the data contained in the Array using KLV
Keys or KLV symbols.

ST 1303-05
(Deprecated)

A Multi-Dimensional Array Pack shall have its mandatory parameters NDIM, Dimi,
EBytes, APA and its optional elements ordered as defined in MISB ST 1303 Table 1:
Multi-Dimensional Array Pack.

ST 1303-06
(Deprecated)

The 16-byte Key for the Multidimensional Array Truncation Pack shall be
06.0E.2B.34.02.05.01.01.0E.01.03.03.06.00.00.00 (CRC 39697).

ST 1303-08
(Deprecated)

The encoding of NDim shall be BER-OID [4].

ST 1303-10
(Deprecated)

The encoding of each Dimi shall be BER-OID [4].

ST 1303-11
(Deprecated)

The encoding of EBytes shall be BER-OID [4].

ST 1303-12
(Deprecated)

The value of EBytes shall be greater than or equal to zero (0).

ST 1303-13
(Deprecated)

EBytes equal to zero (0) shall signal that the Array of Elements is not included in the
Multi-Dimensional Array Pack.

ST 1303-15
(Deprecated

The data in the Array of Elements shall be organized in row major order.

ST 1303-18
(Deprecated

If EPA is 0x02, then the Array Elements shall be encoded as IMAPB(Minimum,
Maximum, EBytes).

Appendix B Row Major Computation

The following equations demonstrate how to compute the offsets into an Array based on the

Array dimensions, D1, D2…DN and the desired Element indexes x1, x2…xn. Each Element index

(x1, x2…xn) is zero based, so the range of xi is zero to Di-1, i.e. xi = [0, Di-1]. ES denotes the

Element size (EBytes) of each Element in the Array.

1-Dimensional Array

Offset(column) = Offset(𝑥1) = 𝑥1𝐸𝑠

2-Dimensional Array

Offset(row, column) = Offset(𝑥1, 𝑥2) = (𝑥1𝐷2 + 𝑥2)𝐸𝑠

3-Dimensional Array

Offset(plane, row, column) = Offset(𝑥1, 𝑥2, 𝑥3) = (x1𝐷2𝐷3 + 𝑥2𝐷3 + 𝑥3)𝐸𝑠

MISB ST 1303.2 Multi-Dimensional Array Pack

25 June 2020 Motion Imagery Standards Board 14

N-Dimensional Array

Offset(𝑥1, … , plane, row, column) = Offset(𝑥1, 𝑥2, … , 𝑥𝑁) = (∑ 𝑥𝑖 (∏ 𝐷𝑗

𝑁

𝑗=𝑖+1

)

𝑁

𝑖=1

) 𝐸𝑠

Appendix C Normalizing Element Lengths

The Natural MDAP requires all Elements within the Array to be the same length. By either

reducing or inflating selected Elements to the desired length, the size of the elements normalizes

to the same length. Reducing data length is possible depending on the application and assuming

no loss in data integrity. For example, if the data Elements are null-padded strings then reduce

the length by removing trailing null characters, if they do not provide any meaning.

Elements inflated or upsized to match the lengths of larger Elements need to follow a consistent

method of inflating. Each type of data will require a different method as indicated in Table 2.

Table 2: Data Inflation Methods

Type Inflation Method

Signed Integer Add sign extended bytes by adding additional most significant bytes. If the most
significant bit of the original value is zero (0), then additional bytes will have all
bits zero (0x00). If the most significant bit of the original value is one (1), then
additional bytes will have all bits set (0xFF).

Unsigned Integer Add additional most significant bytes with zero filled bytes (0x00)

32-bit Float Type Cast a 32-bit floating point value into a 64-bit floating point value

Strings Pad the end of the string with null (0x00) characters

To deflate the data back to the original size, if known, perform the Data Inflation method in

reverse.

Appendix D APA (Array Processing Algorithm)

An Array Processing Algorithm enables packing or other processing on Array Elements. Table 3

lists the available Array Processing Algorithms.

MISB ST 1303.2 Multi-Dimensional Array Pack

25 June 2020 Motion Imagery Standards Board 15

Table 3: Array Processing Algorithms

APA
Value

Algorithm Reference
Format

Type
Number of
Parameters

0x00 Reserved – Do not use N/A N/A 0

0x01
Natural Format – No Element Processing or
Encoding

N/A Natural 0

0x02 MISB ST 1201 Floating Point to Integer Mapping Appendix D.1
Element-

Processed
2

0x03 Boolean Array Encoding Appendix D.2 Compact 0

0x04 Unsigned Integer Encoding Appendix D.3 Compact 1

0x05 Run-Length Encoding Appendix D.4 Compact 1

Appendix D.1 MISB ST 1201 Element Processing

In formatting floating point Elements into KLV, MISB ST 1201 [3] reduces the number of bytes

per Element by mapping floating point values to integers. There are two methods specified in ST

1201 for mapping the values: IMAPA and IMAPB. IMAPA parameters are the minimum,

maximum and precision values to compute the length of a mapped integer value; IMAPB

parameters are the minimum, maximum and a pre-computed length value. Table 4 describes the

minimum and maximum values per ST 1201.

Table 4: MISB ST 1201 Minimum/Maximum Values

Requirement

ST 1303-17 When using APA 0x02, the APAS value shall contain the Minimum and Maximum
values as defined in MISB ST 1303 Table 4: MISB ST 1201 Minimum/Maximum
Values.

The value of EBytes along with the Minimum and Maximum values form the IMAPB mapping

parameters for each value in the Array: IMAPB(Minimum, Maximum, EBytes). Because the

MDAP already specifies the length of an Element in the Array, this standard uses the IMAPB

method of MISB ST 1201.

Name Description

ST 1201
Minimum Value

The Minimum Value used for mapping and reverse mapping any value in the
Array to its corresponding packed value - see MISB ST 1201 for further details.

ST 1201
Maximum Value

The Maximum Value used for mapping and reverse mapping any value in the
Array to its corresponding packed value - see MISB ST 1201 for further details.

MISB ST 1303.2 Multi-Dimensional Array Pack

25 June 2020 Motion Imagery Standards Board 16

Requirement

ST 1303-19 The IMAPB Minimum and Maximum parameters shall both be the same size: either
both 32-bit or both 64-bit IEEE [5] floating point numbers.

The combined length of the Minimum and Maximum parameters is computed from the total

length of the Pack minus the length of the other parameters (NDim, Dim1, …, DimN, EBytes APA

and Array of Elements), as shown below.

MinMax Length = Pack Length - (L(NDim) + L(Dim1) + … + L(DimN) + L(EBytes) + L(APA) +

L(Array of Elements))

Where:

 MinMax Length = L(Minimum) + L(Maximum)

 L(x) is the length of value x in bytes.

MinMax Length will be either 8 bytes or 16 bytes. When the MinMax length is 8 bytes then the

Minimum and Maximum values are single precision, so the first four bytes are the Minimum

parameter and the last four bytes are the Maximum parameter. When the MinMax length is 16

bytes the Minimum and Maximum values are double precision, so the first 8 bytes are the

Minimum parameter and the last 8 bytes are the Maximum parameter.

Appendix D.2 Boolean Array Encoding

A multi-dimensional array of Boolean values compacts into a series of bytes with each bit in the

bytes representing one Boolean value. With zero (0) equaling “false” and one (1) equaling

“true”, the multi-dimensional Boolean array is serialized into a single dimensional linear array as

described in Section 7.2.5. The resulting byte representation groups each eight bits into a byte for

the whole sequence of Boolean values. The final byte has extra zero bits appended if the

resulting number of bits is not a multiple of eight. Figure 6 illustrates the serialization, padding,

and conversion to byte values for an example 5x4 Binary Array. The resulting value is three

bytes for the 20 Boolean values.

MISB ST 1303.2 Multi-Dimensional Array Pack

25 June 2020 Motion Imagery Standards Board 17

Figure 6: Boolean Array Example

To reverse the process, the product of the dimension values (D1 .. Dn) determines the number of

valid bits converted back to the multidimensional Boolean array.

When using Binary Array coding the EBytes value is set to one (1).

Appendix D.3 Unsigned Integer Encoding

A multi-dimensional array of unsigned integers (UInt) encodes each Element as a BER-OID. The

multi-dimensional UInt array serializes into a single dimensional linear array. Each value of the

serialized array is BER-OID encoded and combined into a single block of BER-OID data.

Because each value is a variable length Element, extracting individual Elements from the

serialized array is not possible until decoding the whole array back into UInt values. Figure 7

illustrates the encoding of a 3x3 array of UInts into a binary block of bytes using BER-OID for

each value. The example shows serialization of the 3x3 array into a linear array of nine values,

where each value is BER-OID encoded producing values with varying length depending on their

numeric value. The final data block contains 12 bytes which is less than the fixed length method

which uses 18 bytes (each value requires two bytes).

0 1 0 0

10 0001 0100 1 1 10000 11 1

5 X 4
Binary Array

Serialize

1 0 0 0

1 0 1 0

1 0 0 0

1 1 1 1

10 0001 0100 1 1 10000 1 0 0 0 01 1

0x48 A8 F0

Bit Padding

MISB ST 1303.2 Multi-Dimensional Array Pack

25 June 2020 Motion Imagery Standards Board 18

Figure 7: Example Unsigned Integer Array Encoding

Reverse the process to decode the BER-OID block of data to a multi-dimensional array. First,

BER-OID decode the values into a one-dimensional array of UInt values, then convert the one-

dimensional array back to a multi-dimensional array using the dimension items from MDAP.

An optimization for an array with large numbers is to subtract a bias value from all Elements in

the array. The bias value is the smallest value in the array. For example, a one-dimensional array

with the values [130, 170, 155, 143, 190] has a minimum value of 130, which when subtracted

from each Element produces a “biased” array with the values [0, 40, 25, 13, 60]. In the original

array each value requires two bytes for BER-OID encoding for a total of 10 bytes; in the

“biased” array each value requires only one byte for a total of 5 bytes plus two bytes to encode

the bias.

When using Unsigned Integer coding the APA item is set to four (4) and the EBytes item is set to

one (1). The APAS item contains the bias as a BER-OID value.

Figure 8 illustrates the complete MDAP and its length from the example in Figure 7. The Length

of 18 (bytes) is the total length of the Multidimensional Array Pack “Value”. The array is a 2-

dimensional array (NDim is 2) with 3 rows (Dim1) and 3 columns (Dim2). The EBytes value is set to

one (1) because the APA is specifying variable length Elements in the array – this value is a

placeholder. The APA method is set to 4, from Table 3, indicating an Unsigned Array Encoding.

The APAS value is set to the bias (or minimum value in the array), which in this illustration is

zero. The Array of Elements consists of the nine BER-OID array Elements encoded into 12

bytes.

12 54 3503 X 3
Unsigned Integer

Array

Serialize

2 2048 0

127 128 1

0x0C36 825E 0290 0000 7F81 0001

BER-OID Encoding (in Hex)

12 54 350 2 2048 0 127 128 1

0C 36 825E 02 9000 00 7F 8100 01

MISB ST 1303.2 Multi-Dimensional Array Pack

25 June 2020 Motion Imagery Standards Board 19

Figure 8: Unsigned Array Example 1

Figure 9 illustrates the complete MDAP and its length from the biased length example discussed

above. The Length of 11 (bytes) is the total length of the Multidimensional Array Pack “Value”.

The array is a 1-dimensional array (NDim is 1) with 5 columns (Dim1). The EBytes value is set to

one (1) because the APA is specifying variable length Elements in the array – this value is a

placeholder. The APA method is set to 4, from Table 3, indicating an Unsigned Array Encoding.

The APAS value is set to the bias (or minimum value in the array), which in this case is 130 or

0x8102 when BER-OID encoded. The Array of Elements consists of the five BER-OID array

Elements.

Figure 9: Unsigned Array Example 2

Appendix D.4 Run-Length Encoding

Run-Length Encoding (RLE) an array provides a method for reducing the bandwidth for arrays

which have contiguous blocks of a constant value. Instead of including each value of an array in

the MDAP, an RLE array only lists starting coordinates and the lengths of a constant value.

Figure 10 illustrates a 10x10 array of values with row/column numbers on the left and top of the

array, respectively. This array has contiguous sections, or “patches” of the same numbers

(highlighted in blue, yellow, or green), in blocks throughout the array. This blocking property

enables reducing the bandwidth by using Run-Length Encoding which is a list of triplets that

includes a value, a starting coordinate, and a run-length. For example, [-1424, (0,3), (10,2)]

describes the array values shaded in green with the value -1424, starting in row/column (0,3),

that extends for 10 rows and 2 columns (10, 2).

Length
18

(BER)

Multidimensional Array Truncation Pack Value

NDim

2
(BER-OID)

Dim1

3
(BER-OID)

Array of Elements
0x0C36 825E 0290 0000 7F81 0001

Dim2

3
(BER-OID)

APA
4

(BER-OID)

APAS
0

(BER-OID)

EBytes

1
(BER-OID)

Length
11

(BER)

Multidimensional Array Truncation Pack Value

NDim

1
(BER-OID)

Dim1

5
(BER-OID)

Array of Elements
0x0028 190D 3C

APA
4

(BER-OID)

APAS
130

(0x8102)

(BER-OID)

EBytes

1
(BER-OID)

MISB ST 1303.2 Multi-Dimensional Array Pack

25 June 2020 Motion Imagery Standards Board 20

Figure 10: Contiguous Blocks in Array for Run-Length Encoding Example

Table 5 provides the complete list of “patches” in the previous example. The Patch Number

column is a reference for describing the patches and is not a part of the encoding process. The

Value, Starting Location and Run Length were previously defined. The Area Size is the number

of Elements the patch includes.

Table 5: List of Patches in Run-Length Encoding Example

Patch
Number

Value
Starting
Location

Run Length Area Size

1 1656 (0,0) (4,3) 12

2 -1424 (0,3) (10,2) 20

3 0 (0,5) (4,5) 20

4 -1015 (4,0) (6,3) 18

5 978 (4,5) (3,5) 15

6 1260 (7,5) (3,5) 15

An optimization is to define a “background” value of the array which states the default value for

the array Elements (discussed below), then patches over-ride the default value with their patch

values. For example, a default value in this example could be the value of patch 2, then patches

1, 3, 4, 5, and 6 define their regions and values. A distributed value (i.e., non-contiguous) in an

array or distributed patches (with the same value) in the array are good candidates for the default

value.

To describe the contents of the example array using RLE requires: two bytes for the Value, four

bytes for the Starting Location, and four bytes for the Run Length for each of the six patches,

resulting in 6 x (2 + 4 + 4) = 60 bytes. To reduce this size further use BER-OID values for the

0

1

2

3

4

5

6

7

8

9

1656 1656 1656 -1424 -1424 0 0 0 0 0

1656 1656 1656 -1424 -1424 0 0 0 0 0

1656 1656 1656 -1424 -1424 0 0 0 0 0

1656 1656 1656 -1424 -1424 0 0 0 0 0

-1015 -1015 -1015 -1424 -1424 978 978 978 978 978

-1015 -1015 -1015 -1424 -1424 978 978 978 978 978

-1015 -1015 -1015 -1424 -1424 978 978 978 978 978

-1015 -1015 -1015 -1424 -1424 1260 1260 1260 1260 1260

-1015 -1015 -1015 -1424 -1424 1260 1260 1260 1260 1260

-1015 -1015 -1015 -1424 -1424 1260 1260 1260 1260 1260

0 1 2 3 4 5 6 7 8 9

MISB ST 1303.2 Multi-Dimensional Array Pack

25 June 2020 Motion Imagery Standards Board 21

Starting Location and Lengths: 6 x (2 + 2 + 2) = 36 bytes. Without using RLE this 10 x 10 array

is 100 x 2 = 200 bytes, therefore, in this example, the bandwidth reduction is 36/200 or 82%.

The RLE method works for any array dimensionality; the Starting Location and Run Length

dimensionality matches the dimensionality of the array. As each case is different RLE may not

be the most efficient method for the array data. The MISB recommends assessing, at run-time,

the best method for transmitting an array.

When using the RLE data format, the Array of Elements is a list of patches with each patch

containing the Value, Coordinates (one coordinate for each dimension), and Run Lengths (one

Run Length for each dimension). The invoking document defines the numeric type of the value.

A single APAS value defines the default value to use for Elements not a part of Patches. The

EByte items states the number of bytes for the default value and each Value in the Patch

description. For example, if the Ebyte value is four (4), then the default value and all the Patch’s

Values will be 32 bits. Figure 11 illustrates the Array of Elements and the format of each Patch

description.

Figure 11: Run-Length Encoding Format

Figure 12 illustrates the complete MDAP for the example in Table 5. The items in red are the

values from the example. The Length of 37 (bytes) is the total length of the Multidimensional

Array Pack value. The array is a 2-dimensional array (NDim is 2) with 10 rows (Dim1) and 10

columns (Dim2). The EBytes value is set to two (2) because the APAS value and each Patch Value

is two bytes. The APA method is set to 5, from Table 3, indicating a Run-Length Encoded array.

The APAS value is set to the default value for the array, which in this case is -1424. The Array

of Elements consists of five Patch Descriptions, each containing a Value, two Coordinates, and

two Run Lengths.

Array of Elements (List of Patch Descriptions)

Value

(Integer)

Coord
Dim1

(BER-OID)

Coord
Dim2

(BER-OID)

Coord
DimN

(BER-OID)

Run Length
Dim1

(BER-OID)

Run Length
Dim2

(BER-OID)

Run Length
DimN

(BER-OID)

Patch Description

MISB ST 1303.2 Multi-Dimensional Array Pack

25 June 2020 Motion Imagery Standards Board 22

Figure 12: Integer Run-Length Encoding Example

Converting the above information into a single hex value result in:

0x2502 0A0A 0205 FA70 0678 0000 0403 0000 0005 0405 FC09 0400 0603 03D2 0405 0305

04EC 0705 0305

Another optimization is to allow patches to overlap. This means the order of the patches in the

list is important since the last patch may “overwrite” values from previous patches. Figure 13

illustrates the same pattern as the example in Figure 10 but where some patches contain the same

value. The Figure 10 example resulted in six patches, while this example only requires four

overlapping patches: [27, (0,0), (10,3)], [0, (0,5), (10,5)], [13,(4,0), (3,10)], [275,(0,3), (10,2)].

Length
37

(BER)

Multidimensional Array Truncation Pack Value

NDim

2
(BER-OID)

Dim1

10
(BER-OID)

Array of Elements

(30 Bytes)

Dim2

10
(BER-OID)

APA
5

(BER-OID)

APAS
-1424

(2 Bytes)

EBytes

2
(BER-OID)

0
(2 Bytes)

0
(BER-OID)

5
(BER-OID)

4
(BER-OID)

5
(BER-OID)

-1015
(2 Bytes)

4
(BER-OID)

0
(BER-OID)

6
(BER-OID)

3
(BER-OID)

978
(2 Bytes)

4
(BER-OID)

5
(BER-OID)

3
(BER-OID)

5
(BER-OID)

1260
(2 Bytes)

7
(BER-OID)

5
(BER-OID)

3
(BER-OID)

5
(BER-OID)

Value
1656

(2 Bytes)

Coord
0

(BER-OID)

Coord
0

(BER-OID)

Run Length
4

(BER-OID)

Run Length
3

(BER-OID)

The default value in APAS
replaces the need to include

Patch Number 2

Patch
Number

1

3

4

5

6

MISB ST 1303.2 Multi-Dimensional Array Pack

25 June 2020 Motion Imagery Standards Board 23

Figure 13: Overlapping Patches Example

Figure 14 illustrates the complete MDAP for the example in Figure 10. The items in red are the

values from the example. The Length of 25 (bytes) is the total length of the Multidimensional

Array Pack value. The array is a 2-dimensional array (NDim is 2) with 10 rows (Dim1) and 10

columns (Dim2). The EBytes value is set to two because the APAS and Path Values are two bytes

(needed to support a value of 275). The APA method is set to 5, from Table 3, indicating a Run-

Length Encoded array. The APAS value is set to the default value for the array, which in this

case is zero (0). The Array of Elements consists of three Patch Descriptions, each containing a

Value (two bytes), two Coordinates, and two Run Lengths.

Figure 14: Overlapping Patches Pack Example

0

1

2

3

4

5

6

7

8

9

27 27 27 275 275 0 0 0 0 0

27 27 27 275 275 0 0 0 0 0

27 27 27 275 275 0 0 0 0 0

27 27 27 275 275 0 0 0 0 0

13 13 13 275 275 13 13 13 13 13

13 13 13 275 275 13 13 13 13 13

13 13 13 275 275 13 13 13 13 13

27 27 27 275 275 0 0 0 0 0

27 27 27 275 275 0 0 0 0 0

27 27 27 275 275 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

Length
25

(BER)

Multidimensional Array Truncation Pack Value

NDim

2
(BER-OID)

Dim1

10
(BER-OID)

Array of Elements

(18 Bytes)

Dim2

10
(BER-OID)

APA
5

(BER-OID)

APAS
0

(2 Bytes)

EBytes

2
(BER-OID)

13
(2 Bytes)

4
(BER-OID)

0
(BER-OID)

3
(BER-OID)

10
(BER-OID)

275
(2 Bytes)

0
(BER-OID)

3
(BER-OID)

10
(BER-OID)

2
(BER-OID)

Value
27

(2 Bytes)

Coord
0

(BER-OID)

Coord
0

(BER-OID)

Run Length
10

(BER-OID)

Run Length
3

(BER-OID)The default value in APAS
replaces the need to include
Patch with the value of zero

MISB ST 1303.2 Multi-Dimensional Array Pack

25 June 2020 Motion Imagery Standards Board 24

Converting the above information into a single hex value result in:

0x1902 0A0A 0205 0000 001B 0000 0A03 000D 0400 030A 0113 0003 0A02

